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Abstract The paper considers the problem of finding a spanning arborescence on a
directed network whose arc costs are partially known. It is assumed that each arc cost
can take on values from a known interval defining a possible economic scenario. In this
context, the problem of finding the spanning arborescence which better approaches
to that of minimum overall cost under each possible scenario is studied. The minimax
regret criterion is proposed in order to obtain such a robust solution of the problem.
As it is shown, the bounds on the optimal value of the minimax regret optimization
problem obtained in a previous paper, can be used here in a Branch and Bound
algorithm in order to give an optimal solution. The computational behavior of the
algorithm is tested through numerical experiments.

Keywords Spanning arborescences · Robust optimization · Branch and Bound
algorithms

1 Introduction

The minimax regret version of the minimum spanning tree on an undirected network
with interval edge costs was first studied by Averbakh and Lebedev in [3]. This optimi-
zation model, that will be called from now MRST problem (Minimax Regret Spanning
Tree Problem), considers as objective function to be minimized, the maximum regret
for any spanning tree given that its edge costs vary in their respective interval esti-
mates. These authors proved that the MRST problem is NP-hard even if the bounds of
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all intervals belong to {0,1}. The NP-Hardness of MRST was independently established
by Aron and Hentenryck in [1].

Yaman et al. proposed a mixed integer programming formulation in [9] for the
MRST problem with interval estimates of the edge costs. They solved the integer
formulation after a preprocessing phase where some edges are eliminated by a dom-
inating condition. Branch and Bound algorithms for MRST have been proposed by
Aron and Hentenryck [2] and Montemanni and Gambardella [8]. A Benders decom-
position approach for MRST problem has been recently proposed by Montemanni in
[7].

In [4] the directed case of the MRST problem is studied. The optimization prob-
lem that minimizes the maximum regret of a spanning arborescence (MRSA) is more
general than the MRST problem and for this reason it is also NP-hard when interval
estimates of the arc costs are considered. In [4] a heuristic algorithm is proposed and
it is shown how the error associated to the approximate solution obtained by the
scheme must be smaller than a given bound. In the present paper, these bounds are
employed in order to give an exact algorithm for the MRSA problem.

The first section will introduce the notation used through this paper and also will
sum up the main results about the bounding process developed in the paper [4]. After
that, a Branch and Bound scheme will be set up in order to guarantee that an opti-
mal solution for this robust optimization problem can be found. Finally we study the
computational behavior of the resulting procedure through a numerical experiment.

2 Notation and preliminary results

In our optimization problem, the set of feasible scenarios, S, is identified by the
Cartesian product of closed intervals of costs [ω−

ij , ω+
ij ], one for each arc (i, j) ∈ E of a

given directed network D = (N, E). In order to save notation, we will denote by s, a
particular scenario, that is, ωs

ij ∈ [ω−
ij , ω+

ij ] for each arc.
An arborescence rooted in a given node of N is a subgraph of D with n−1 arcs

(|N| = n), so that, every node in N other than its root is connected to the root by a
directed path of arcs in the subgraph. Let A be the set of spanning arborescences in
D with the node 1 as their roots. For a fixed scenario s, the cost of an arborescence
X ∈ A is given by

Fs(X) =
∑

(i,j)∈X

ωs
ij.

By Fs we denote the optimal objective value of the Minimum Spanning Arborescence
(MSA) problem defined by the scenario s, that is,

Fs = min
X∈A

Fs(X) MSA(s).

As it is well-known the problem MSA(s) can be solved in polinomial time by Edmonds’
algorithm [5].

The risk that the decision maker must support due to the choice of a specific span-
ning arborescence X ∈ A under the scenario s is given by Rs(X) = Fs(X)−Fs, this risk
function is also known in the literature as regret value. The maximum regret over the
set of scenarios R(X) = max{Rs(X): s ∈ S} is the evaluation cost of X ∈ A under our
decision criterion. Hence, our goal is to find a spanning arborescence that minimizes
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the maximum risk or regret under the set of scenarios (Minimax Regret Spanning
Arborescence)

R∗ = min R(X)

st : X ∈ A.
MRSA

As it was said in the introduction, the MRSA problem is NP-hard [3] therefore, the
algorithms that can be proposed to seek optimal solutions must be computationally
expensive. The framework of the Branch and Bound methods help us in the task of
developing numerical algorithms to solve these type of problems. In what follows, we
deal with the application of this technique to the MRSA problem using the following
properties that can be found in [4].

Property 2.1 If the network D is acyclic then, the MRSA problem is equivalent to a
MSA problem with the arc costs ωij given by

ωij = ω+
ij − min{ω+

ij , ω−
kj : (k, j) ∈ E\(i, j)} ∀(i, j) ∈ E.

For general, non necessarily acyclic, networks solving the MSA problem with arc
costs ω, given in the property 2.1, can only guarantee an upper bound on the optimal
objective of the MRSA problem.

Property 2.2 Let β be the optimal objective value of the MSA problem on D with the
set of arc costs given by ω then, β ≥ R∗, that is, β is an upper bound on the optimal
value of the MRSA problem.

In order to compute upper bounds on R∗ one can also evaluate the objective
function R(X) of the MRSA problem over a set of promising solutions. The task of
evaluating the maximum regret for a given spanning arborescence is, by itself, an
optimization problem. The following definition is useful in order to have such an
evaluation.

Definition 2.1 Let X ∈ A be an arbitrary spanning arborescence then, the worst case
scenario for X is given by

ω
s0(X)
ij =

{
ω+

ij if (i, j) ∈ X
ω−

ij if(i, j) /∈ X.

The next property guarantees that evaluating the maximum regret of a given solu-
tion is equivalent to solve the MSA problem defined by the corresponding worst
scenario (MSA(s0(X))).

Property 2.3 Let X ∈ A be an arbitrary spanning arborescence then, it is verified

R(X) = Fs0(X)(X) − Fs0(X).

In order to have lower bounds on R∗, the optimal objective value of the MRSA
problem, we can make use of the result given in Property 2.1, in fact, the determina-
tion of optimal solutions for a MSA problem in the acyclic case is extremely easy, just
take the cheapest arc entering in each node other than node 1. With this idea in mind,
it was defined in [4] the following arc costs.
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Definition 2.2 Let Da = (N, Ea) be an acyclic spanning subgraph contained in D then,
we define the following set of costs associated to the scenario set S,

ω
Da
ij =

{
ω+

ij − min{ω−
kj : (k, j) ∈ Ea} if (i, j) /∈ Ea

ω+
ij − min{ω+

ij , ω−
kj : (k, j) ∈ Ea\(i, j)} if (i, j) ∈ Ea.

We denote by A(Da) the set of spanning arborescences in Da with the node 1 as their
roots.

Remark 2.1 By a spanning subgraph it is meant a subgraph of D so that it contains at
least one spanning arborescence of D rooted in 1, that is, A(Da) �= ∅. This ensures, in
particular, the finiteness of the coefficients ω

Da
ij given that, for each node j in N \ {1},

there exists at least one arc (k, j) in Ea entering in it, which implies the finiteness of
min{ω−

kj : (k, j) ∈ Ea} for every (i, j) /∈ Ea.

A method of finding lower bounds on R∗ is given by the next result.

Property 2.4 Let Da = (N, Ea) be an acyclic spanning subgraph contained in D and
α(Da) the optimal objective value of the MSA problem on D with arc costs given by
ω

Da
ij then, α(Da) ≤ R∗, that is, α(Da) is a lower bound on the optimal objective of the

MRSA problem.

In [4] these bounds, in conjunction with some other properties, were used in the
developing of a heuristic algorithm, now they are used on a Branch and Bound
algorithm.

3 Branch and Bound Process

The properties given in the last section allow us to determine upper and lower bounds
on the optimal objective value of the MRSA problem. Moreover, if we design a search
procedure in which the original MRSA problem is split in a finite number of MRSA
subproblems, we can use these bounds for pruning subproblems and, as we will see in
this section, for eliminating infeasible subproblems.

We will use a typical splitting rule given by fixing a subset of arcs that must be con-
tained in any spanning arborescence of the subproblem (binding arcs) and a subset of
arcs that are forbidden for the feasible spanning arborescences.

Let F be the set of forbidden arcs and B, the set of binding (obligatory) arcs, the
subproblems that will be used in the Branch and Bound process have the form

min R(X)

st : X ∈ A
B ⊆ X ⊆ E\F.

MRSA (F, B)

In order to make sense of the optimization subproblem MRSA (F, B) we will assume
from now on, the following

Hypothesis 3.1 The sets F and B have empty intersection, no arc in B has node 1 as its
end vertex and there are neither two arcs in B with common end vertex nor vertices in
N\{1} with zero inner degree in E\F.
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It is obvious that, if Hypothesis 3.1 is not verified then, the MRSA subproblem
associated to B and F has an empty feasible set. Moreover, this hypothesis can be eas-
ily tested and in case of failure of any of the conditions it imposes, the corresponding
subproblem can be pruned out from the search tree in the Branch and Bound process.

We define RFB(X) as the maximum regret for the spanning arborescence X ∈ A
respect to the set of interval costs

ω+
ij (F, B) = +∞ if (i, j) ∈ F and ω+

ij (F, B) = ω+
ij if (i, j) /∈ F,

ω−
ij (F, B) = −∞ if (i, j) ∈ B and ω−

ij (F, B) = ω−
ij if (i, j) /∈ B.

(1)

Property 3.1 If there exists at least one spanning arborescence Y ∈ A such that B ⊆
Y ⊆ E \ F then, for every X ∈ A,

RFB(X) < +∞ ⇔ B ⊆ X ⊆ E\F.

Proof Let X ∈ A such that there exists an arc (i, j) ∈ B\X then, ω
s0
FB(X)

ij = ω−
ij (F, B) =

−∞ which implies that Fs0
FB(X) = −∞, in fact, by definition

Fs0
FB(X) ≤ Fs0

FB(X)(Y) = −∞,

where Y ∈ A and B ⊆ Y ⊆ E \ F by hypothesis.
Hence, using Property 2.3 and the definition of ω±(F, B) one has that

RFB(X) = Fs0
FB(X)(X) − Fs0

FB(X) = +∞.

Therefore, given X ∈ A with RFB(X) < +∞ it is clear that B ⊆ X which implies
that every component of the vector ωs0

FB(X) must be finite or +∞, never −∞. From this
fact, one has that, in particular, Fs0

FB(X) ≤ Fs0
FB(X)(Y) < +∞, that is, RFB(X) < +∞

implies Fs0
FB(X)(X) < +∞ and then X ⊂ E \ F.

The converse is trivial, from the fact that, if B ⊆ X ⊆ E \ F then every component
of the vector ωs0

FB(X) must be finite. �
Corollary 3.1 If there exists at least one spanning arborescence Y ∈ A such that B ⊆
Y ⊆ E \ F then, for every X ∈ A,

RFB(X) < +∞ ⇔ RFB(X) = R(X).

Proof It follows from the proof of Property 3.1 and the definition of ω±(F, B). �
3.1 Upper bounding the subproblems

Now, we will upper bound the optimal objective value of each subproblem MRSA
(F, B). First of all, we will state a result that can be used as a feasibility test for the
subproblems MRSA (F, B).

Property 3.2 Let β0
FB be the optimal objective value for the MSA problem

β0
FB = min

X∈A

∑

(k,p)∈X

ωkp(F, B),

where, for all (k, p) ∈ E, we define

ωkp(F, B) = ω+
kp(F, B) − min{ω+

kp(F, B), ω−
jp(F, B) : (j, p) ∈ E \ (k, p)}.
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Then, β0
FB < +∞ if and only if there exists an arborescence Y ∈ A, such that B ⊆ Y ⊆

E\F.

Proof Let us suppose that β0
FB < +∞ then, there must exist, at least an arborescence

Y ∈ A such that
∑

(k,p)∈Y

ωkp(F, B) < +∞.

By its definition, ωkp(F, B) ≥ 0 for all (k, p) ∈ E, therefore

ωkp(F, B) < +∞ ∀(k, p) ∈ Y. (2)

Now, let (k, p) ∈ F, following the definition of ωkp(F, B) one has that

ωkp(F, B) = +∞ − min
{
+∞, ω−

jp(F, B) : (j, p) ∈ E\(k, p)
}

= +∞

where the last equality follows from the fact that there must exist at least one arc (j, p)

in E\F (Hypothesis 3.1) which makes the above minimum to be finite or −∞. Hence,
Y ⊆ E\F according with (2).

In order to prove that B ⊆ Y, let us assume the opposite, that is, let (j, p) ∈ B\Y.
Since Y is an arborescence, there must exist an arc in Y with the vertex p as its
endpoint, let (k, p) be such an arc. By its definition it follows,

ωkp(F, B) = ω+
kp − min

{
ω+

kp, ω−
ip(F, B) : (i, p) ∈ E \(k, p)

}
.

In particular, one has that, since ω−
jp(F, B) = −∞ and ω+

kp < +∞ then, ωkp(F, B) =
+∞ which leads to a logical contradiction with (2). In conclusion, the set of arcs B
must be contained in the set of arcs defining the arborescence Y.

This concludes one of the implications that we must show, to prove the converse,
let Y be an arborescence verifying the constraints imposed by the set of arcs F and B,
that is, B ⊆ Y ⊆ E\F. Given (k, p) ∈ Y we may have one of the following situations.
The first one is that (k, p) belongs to the set of binding arcs B. In that case,

ωkp(F, B) = ω+
kp − min

{
ω+

kp, ω−
jp : (j, p) ∈ E\(k, p)

}
,

where ω+
kp is finite according with its definition and ω−

jp(F, B) = ω−
jp for each (j, p) ∈

E\(k, p), it cannot be equal to −∞ by Hypothesis 3.1, otherwise it must imply that B
contains at least two arcs with the same endpoint. Hence, ωkp(F, B) must be finite.

The second case that one may have is that (k, p) belongs to Y \ B then, since
ω+

kp < +∞, because (k, p) /∈ F, and ω−
jp > −∞ for all (j, p) ∈ E\(k, p) (otherwise, B

would not be included in Y), one finally has that ωkp(F, B) must be finite.
Hence, in both cases we have shown the finiteness of the coefficients given by

ωkp(F, B), which implies that
∑

(k,p)∈Y

ωkp(F, B) < +∞.

Finally, taking into account that ωkp(F, B)’s are all nonnegative coefficients by its
definition, we have that β0

FB exists and is finite. �
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Using the previous results one can finally have an upper bound on the minimax
regret over the set of feasible spanning arborescences according with the constraints
given by the sets of forbidden (F) and binding (B) arcs. This bound is given by β0

FB as
it is formally stated in the following.

Theorem 3.1 Given a couple (F, B) of forbidden and binding arcs of E, β0
FB is an upper

bound for the optimal objective of MRSA (F, B). Moreover, β0
FB < +∞ if and only if

the optimization problem MRSA (F, B) is feasible and, in this case, it is equivalent to the
unrestricted MRSA problem with interval costs given by the bounds ω±

ij (F, B) defined
in (1).

Proof First of all, note that the optimization subproblem MRSA (F, B) has a non-
empty feasible set if and only if β0

FB < +∞ (Property 3.2). Hence, even in the case of
an infeasible MRSA (F, B) problem, the bound given by β0

FB is valid.
Let us now suppose that β0

FB is finite. Then, there exist feasible solutions for the
subproblem MRSA (F, B) (Property 3.2) and according with the property 3.1 and its
corollary,

RFB(X) = R(X) ∀ X ∈ A : B ⊆ X ⊆ E\F

whereas RFB(X) = +∞ on any X ∈ A which is infeasible for MRSA (F, B). Therefore,
one has that

min RFB(X) = min R(X)

st : X ∈ A st : X ∈ A
B ⊆ X ⊆ E\F.

Following Property 2.2 it is known that β0
FB is an upper bound on the optimal objective

value of the left hand side optimization problem then, our result has been shown. �
Corollary 3.2 Let XFB ∈ A such that β0

FB = ∑
(k,p)∈XFB

ωkp(F, B) < +∞, then one
can refine the upper bound on the minimum of MRSA (F, B) by taking as upper bound

βFB = Fs0
FB(XFB)(XFB) − Fs0

FB(XFB) = R(XFB).

Proof First, one has by Property 4.1 of [4] that

RFB(XFB) ≤
∑

(k,p)∈XFB

ωkp(F, B) = β0
FB, (3)

and β0
FB < +∞, therefore RFB(XFB) < +∞. Hence, by Corollary 3.1 it follows that

R(XFB) = RFB(XFB). Finally, using Property 2.3 and the inequality (3) one has

R∗ ≤ R(XFB) = Fs0
FB(XFB)(XFB) − Fs0

FB(XFB) ≤ β0
FB.

�
3.2 Lower bounding the subproblems

In order to lower bound the subproblem MRSA (F, B) let us define the set of scenarios
induced by the binding and forbidden arcs, S(F, B), that is the Cartesian product of
the intervals [ω−

ij (F, B), ω+
ij (F, B)] given in (1) and let us consider the regret function

RDa
FB(X) = max

s∈S(F,B)

{
Fs(X) − min

Y∈A(Da)
Fs(Y)

}
(4)
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where Da and A(Da) were given in Definition 2.2. Finally, let us take the coefficients
ω

Da
ij (F, B) given by Definition 2.2 associated, in this case, to the scenario set S(F, B).

We will assume that MRSA (F, B) has feasible solutions which can be tested by
checking if β0

FB is finite or not, as it was established in Property 3.2. Then, one has the
following

Theorem 3.2 Given Da = (N, Ea), an acyclic spanning subgraph contained in D, the
optimal objective value αFB(Da) of the MSA problem on D with arc costs given by
ω

Da
ij (F, B) is a lower bound on the optimal objective of the MRSA (F, B) problem.

Proof According with the property 3.1 and its corollary,

RFB(X) = R(X) ∀ X ∈ A : B ⊆ X ⊆ E\F

whereas RFB(X) = +∞ on any X ∈ A which is infeasible for MRSA (F, B).
On the other hand, by definition of RDa

FB(X), (4), one has that

RDa
FB(X) ≤ RFB(X) ∀ X ∈ A,

since RDa
FB(X) represents the maximum regret for X respect to a subset of spanning

arborescences of D, those contained in A(Da). Hence, it is verified

min RDa
FB(X) ≤ min R(X)

st : X ∈ A st : X ∈ A
B ⊆ X ⊆ E \ F B ⊆ X ⊆ E \ F.

(5)

Taking into account that, by definition,

αFB(Da) = min
∑

(k,p)∈X ω
Da
kp (F, B)

st : X ∈ A,

which implies by [4]

αFB(Da) = min RDa
FB(X)

st : X ∈ A,

from (5) it follows that αFB(Da) is a lower bound for the optimal value of MRSA
(F, B). �

4 The algorithm

As it is well-known the strategy of a Branch and Bound algorithm consists in solv-
ing a sequence of subproblems associated to a partition of the feasible set of the
original optimization problem. In the process, the bounds on the optimal objective
are adjusted. Using these bounds, some subproblems can be eventually pruned in the
progress of the algorithm due to their best feasible solutions are worse than a given
solution which has been obtained in previous iterations.

We will identify the subproblems solved in the iterations of the algorithm by
a pair of disjoint subset of arcs, F and B and some other information about the
known bounds on their optimal objectives. In order to describe the algorithm, a list
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L , whose elements are the subproblems that must be solved in the next iterations,
will be used. Each element of this list is identified by (XFB, F, B, αFB, βFB) ∈ L,
where αFB is a lower bound on the minimum of MRSA (F, B), βFB is an upper
bound and XFB is the best feasible solution generated in previous iterations for the
subproblem MRSA (F, B).

In order to initiate the process, one can take F = B = ∅, βFB, the upper bound given
by the corollary 3.2. Let XFB be the optimal solution of the MSA problem defining
β0

FB (Property 3.2) and YFB so that

Fs0
FB(XFB) = Fs0

FB(XFB)(YFB).

An acyclic spanning subgraph Da can be obtained from the spanning arborescence
YFB by adding to it arcs from E, in such a way that its acyclicity is preserved. The
lower bound αFB = αFB(Da) obtained from Da can be directly used to initialize
the list L or can be improved by applying sequentially this bounding process. That
is, taking now X ∈ A, the optimal arborescence that defines αFB(Da) according to
the theorem 3.2, one can repeat the above bounding process replacing the initial
arborescence XFB by X, calculating YFB an optimal solution of the MSA (s0

FB(X)),
adding to this arborescence arcs from E to obtain a new subgraph Da and so on.
In the scheme of the algorithm stated later, this process will be repeated for M
times in the step 1:2, where M is a parameter that must be established by the
user.

Once the list L has been initialized, each iteration of the algorithm will select an ele-
ment of the list, that with smallest upper bound βFB, and an arbitrary arc (i, j) ∈ XFB\B.
Obviously, if the choice of such an arc is not possible, the corresponding subproblem
can be deleted from L because the only feasible solution for this subproblem is given
by XFB, that is, this subproblem has been exactly solved and it must not be considered
in the next iterations of the algorithm.

The branching process will divide the feasible set of the selected subproblem into
two parts by including the arc (i, j) in the set of the binding arcs or in the set of
the forbidden ones. Hence, the selected element of L will be replaced by two ele-
ments, (XF1B1 , F1, B1, αF1B1 , βF1B1), (XF2B2 , F2, B2, αF2B2 , βF2B2) where F1 = F, B1 =
B ∪ {(i, j)}, F2 = F ∪ {(i, j)} and B2 = B.

The upper bound for the first of these two new subproblems must not be recalcu-
lated since the spanning arborescence XFB is feasible and βFB = RFB(XFB) = R(XFB)

according with the corollary 3.1. Therefore, one can take XF1B1 = XFB and also main-
tain both, the upper and lower bounds βF1B1 = βFB and αF1B1 = αFB.

For the second subproblem introduced into L one should actualize the upper bound
since the bound βFB does not longer apply. Once the new bound βF2B2 has been cal-
culated, we will actualize the lower bound for this subproblem from the spanning
arborescence YF2B2 as it was already explained above.

The resulting algorithm will be stated below.

Algorithm 4.1

0: Input: D = (N, E), ω±
ij for each (i, j) ∈ E.

1: Initialization: Take F = B = ∅, αFB = 0 and L = ∅.
1:1: Initialization of the lower and upper bounds: Let XFB and βFB be the spanning arborescence

and the upper bound given by Corollary 3.2. Take X = XFB.
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1:2: Improving the lower and upper bounds: Repeat this step for M times. Let YFB ∈ A
be a spanning arborescence so that,

Fs0
FB(X) = Fs0

FB(X)
(YFB).

Following the corollary 3.2 R(X) = Fs0
FB(X)

(X) − Fs0
FB(X) then, if R(X) < βFB

actualize βFB = R(X) and XFB = X. Add arcs to YFB maintaining its acyclicity.
Let Da be the resulting acyclic network.
Take

αFB(Da) = min
∑

(k,p)∈X ω
Da
kp (F, B)

st : X ∈ A,

and let X be the arborescence where the optimal value αFB(Da) is reached. If αFB <
αFB(Da) actualize αFB = αFB(Da).

1:3 If αFB = βFB, STOP: XFB is an optimal solution. In other case, actualize L :=L ∪
{(XFB, F, B, αFB, βFB)}, β = βFB and X∗ = XFB.

2: Iteration: While L �= ∅:
2:1: Take (XFB, F, B, αFB, βFB) ∈ L so that βFB is a minimum.
2:2: Select an arc (i, j) ∈ XFB \ B, so that, there is at least an arc in E \ (F ∪ {(i, j)})

entering in j.

• If no choice is possible, the subproblem MRSA (F, B) has as an optimal solu-
tion the spanning arborescence XFB. Delete this subproblem from L and go to
Iteration.

• Otherwise, eliminate this subproblem from L and continue.

2:3: Branching: Add to the list L the elements (XF1B1
, F1, B1, αF1B1

, βF1B1
) and

(XF2B2 , F2, B2, αF2B2 , βF2B2 ) where F1 = F, B1 = B ∪ {(i, j)}, F2 = F ∪ {(i, j)}
and B2 = B. Here XF1B1

= XFB, αF1B1
= αFB, βF1B1

= βFB and XF2B2 ,
αF2B2 , βF2B2 are the spanning arborescence and the bounds obtained by applying
1:1 and 1:2 with M = 1 (by initializing αF2B2 = αFB).

2:4: If βF2B2 < β actualize β = βF2B2 and X∗ = XF2B2 . Delete every element of the
list L with a lower bound greater than β.

3: Output: The spanning arborescence X∗ is an optimal solution for the problem MRSA .

Theorem 4.1 Algorithm 4.1 exactly solves the problem MRSA after a finite number of
iterations.

Proof The proof follows from the finiteness of the branching process given that, in
each iteration, the binding arc set or the forbidden arc set, increases in size for the
new generated subproblems. �

5 Numerical experiments

In the following numerical experiment, random networks of number of nodes n =
10, 20, 30, 40 and 50 were solved using Algorithm 4.1. Given an ordered pair of nodes
of one of these networks, i, j the corresponding arc (i, j) was generated with probability
p = 0′5.

The necessary uncertain interval, [ω−
ij , ω+

ij ], for each generated arc, was randomly
obtained according with a beforehand specified level of uncertainty δ. Specifically, for
each arc (i, j) the lower bound of the uncertain interval, ω−

ij , was randomly generated
from a uniform distribution on the interval [0, 100]. Afterwards, the upper bound for
this interval was generated according with the equation

ω+
ij = ω−

ij (1 + Uδ),
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where U follows an independent uniform distribution on [0, 1]. Hence, the factor δ

represents, in some way, the admissible level of uncertainty in the cost coefficients of
the problem.

The results of Table 1 were obtained for four degrees of uncertainty δ = 1, 5, 10
and 25% on a personal computer with Intel � Pentium � M processor, 1.60GHz
with 0′99 GB RAM and the code was written as a Matlab � v.6.5 program. For each
combination of δ and n, fifty instances of the problem were generated according to
the process described before. In the step 1:2 of the algorithm 4.1 it was taken M = 40.

Analysing Table 1, one can see how the CPU time and number of branching oper-
ations, or NBO (step 2:3 of the algorithm 4.1), increase with the number of nodes.
This is the type of behavior one may expect for the Branch and Bound process but,
perhaps, what is more surprising is the fast increasing in computational times when
the uncertain degree, δ, grows. This increase in the execution times turned out to
be dramatic for the largest values of n for which the computational capabilities of
the personal computer used in the experiment were widely exceeded. Specifically, for
n = 50 and δ = 25%, the entry of Table 1 is empty, indicating that the first ten instances
that were introduced as inputs of the algorithm 4.1, gave execution times greater than
2500 seconds of CPU, these processes were aborted before that their optimal values
were reached.

In order to compare the results obtained with the algorithm 4.1, we will give, in
what follows, a Mixed Integer Programming (MIP) formulation that will be solved
later by means of a standard MIP solver. This MIP formulation has been obtained
using the same ideas applied by Yaman et al. in [9]. These authors have, in turn,
used a previous work of Magnanti and Wolsey, [6], where the minimum spanning tree
problem was modeled as a version of a network flow problem. In this new problem,
a flow of n − 1 units is sent from the root to the other nodes using only n − 1 edges.
The minimum cost flow under such constraints, determines a minimum spanning tree

Table 1 Averages (tCPU), Standard Deviations (σCPU) of the CPU times, in seconds, and Averages
of the Number of Branching Operations (NBO) spent by Algorithm 4.1 in the numerical experiment

n

p = 0′5 10 20 30 40 50

δ = 1% tCPU 0′08 0′88 4′11 15′29 40′60
σCPU 0′03 0′09 0′22 5′11 7′91
NBO 9′95 19′50 30′00 40′05 51′3

δ = 5% tCPU 0′13 1′03 5′78 23′90 142′62
σCPU 0′11 0′51 4′01 16′49 279′81
NBO 9′45 20′50 36′76 60′90 108′60

δ = 10% tCPU 0′13 3′07 8′37 53′12 250′32
σCPU 0′09 5′80 4′52 62′32 276′96
NBO 9′85 53′71 46′70 170′9 309′16

δ = 25% tCPU 0′30 6′78 20′05 213′21 –
σCPU 0′36 18′81 23′68 299′37 –
NBO 11′15 77′10 140′40 683′20 –
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for the network. Using this idea, for a given scenario s ∈ S, the MSA problem can be
formulated as the mixed integer linear program

min
∑

(i,j)∈E ωs
ijxij

st :
∑

(j,k)∈E fjk − ∑
(i,j)∈E fij =

{
n − 1, if j = 1,
−1, if j �= 1,

fij ≤ (n − 1)xij ∀(i, j) ∈ E,∑
(i,j)∈E xij = n − 1,

fij ≥ 0 ∀(i, j) ∈ E,
xij ∈ {0, 1} ∀(i, j) ∈ E.

(6)

Unfortunately, in the formulation (6) the vertices of the feasible polyhedron are
not integer in general, and in consequence, the binary variables xij can not be relaxed.
However, following [6] one can have an equivalent linear program by splitting the
flow emanating from the root into n − 1 individual flows that serve exactly one unit
of product, to each node. Using this idea, Magnanti and Wolsey proposed in ([6]) a
linear program for the minimum spanning tree problem. Rewriting this formulation
for our MSA problem one obtains

min
∑

(i,j)∈E ωs
ijyij

st : ∑
(1,k)∈E f p

1k − ∑
(i,1)∈E f p

i1 = 1 ∀p �= 1,∑
(j,k)∈E f p

jk − ∑
(i,j)∈E f p

ij = 0 ∀j �= 1, p �= 1, j �= p,
∑

(j,k)∈E f j
jk − ∑

(i,j)∈E f j
ij = −1 ∀j �= 1,

f p
ij ≤ yij, ∀(i, j) ∈ E, p �= 1,∑

(i,j)∈E yij = n − 1,
f p
ij ≥ 0 ∀(i, j) ∈ E, p �= 1,

yij ≥ 0 ∀(i, j) ∈ E.

(7)

Finally, we will use the same technique as Yaman et al. in [9] in order to have a
MIP formulation for our MRSA problem. Taking the dual problem of (7) one has that

Fs0(X) = max
∑

p�=1(γ
p
p − γ

p
1 ) + (n − 1)µ

δ
p
ij ≥ γ

p
j − γ

p
i ∀(i, j) ∈ E, ∀p �= 1,∑

p�=1 δ
p
ij + µ ≤ ω−

ij + (ω+
ij − ω−

ij )xij, ∀(i, j) ∈ E,
γ

p
i ≥ 0 ∀i, p �= 1,

δ
p
ij ≥ 0 ∀(i, j) ∈ E, ∀p �= 1,

(8)

for all arborescence X ∈ A which is identified by its binary variables xij ∈ {0, 1},
(i, j) ∈ E. Note that, in the dual formulation (8), we have written

ω
s0(X)
ij = ω−

ij + (ω+
ij − ω−

ij )xij

according with Definition 2.1.
Hence, using Property 2.3 and the expression of Fs0(X) given by (8) we can modify

the formulation (6), in order to give a mixed integer linear program for MRSA, as
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follows

min
∑

(i,j)∈E ω+
ij xij − ∑

p�=1(γ
p
p − γ

p
1 ) − (n − 1)µ

st :
∑

(j,k)∈E fjk − ∑
(i,j)∈E fij =

{
n − 1, if j = 1,
−1, if j �= 1,

δ
p
ij ≥ γ

p
j − γ

p
i , ∀(i, j) ∈ E, ∀p �= 1,∑

p�=1 δ
p
ij + µ ≤ ω−

ij + (ω+
ij − ω−

ij )xij ∀(i, j) ∈ E,
fij ≤ (n − 1)xij, ∀(i, j) ∈ E,∑

(i,j)∈E xij = n − 1,
fij ≥ 0, ∀(i, j) ∈ E,
xij ∈ {0, 1}, ∀(i, j) ∈ E.
γ

p
i ≥ 0, ∀i, p �= 1,

δ
p
ij ≥ 0 ∀(i, j) ∈ E, ∀p �= 1

(MIP)

Formulation (MIP) was solved for the same instances of the computational experi-
ment developed to obtain Table 1 and in the same computer where such an experiment
was carried out. The ILOG CPLEX � 8.1 MIP solver was used to solve our (MIP)

formulation. The results are shown in Table 2 where, in addition to the averages and
deviations of the CPU times, it has been included the average of the number of itera-
tions and nodes given by the MIP solver in the final report of the optimal solution for
each instance.

The empty entries of Table 2 have the same meaning as in Table 1. Taking into
account only the nonempty entries of both tables, one can see how the CPU times

Table 2 Averages (tCPU), Standard Deviations (σCPU) of the CPU times, in seconds, and Averages
on the Number of Iterations (Iterations) and Nodes (Nodes) spent by the ILOG CPLEX � 8.1 MIP
solver in the numerical experiment

n

p = 0′5 10 20 30 40 50

δ = 1% tCPU 0′05 1′03 30′31 587′32 –
σCPU 0′03 0′59 22′15 223′45 –

Iterations 247′95 2703′05 19081′65 88987′60 –
Nodes 0′00 10′65 89′45 64′70 –

δ = 5% tCPU 0′06 1′29 28′79 500′24 –
σCPU 0′02 0′47 18′26 320′69 –

Iterations 277′55 3258′95 19245′20 76890′30 –
Nodes 0′20 3′40 65′35 84′50 –

δ = 10% tCPU 0′07 1′58 45′69 631′70 –
σCPU 0′04 0′47 24′96 406′40 –

Iterations 312′60 4060′65 25994′40 89040′42 –
Nodes 0′00 3′80 64′95 24′36 –

δ = 25% tCPU 0′07 2′07 63′49 977′49 –
σCPU 0′03 0′83 32′83 514′49 –

Iterations 333′90 5158′65 32620′10 147694′05 –
Nodes 0′15 5′60 62′25 333′55 –
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shown in Table 1 have been exceeded in a 536′88%, in average, by the corresponding
CPU times of Table 2. It is also interesting to observe how the dependence between
the CPU times spent in solving the MIP formulation and the admisible level of uncer-
tainty, δ, is much less strong than in the case of the Algorithm 4.1.

6 Conclusions

In this paper, it has been proposed a Branch and Bound algorithm for solving the
robust (minimax) version of a classical combinatorial problem: The Minimum Span-
ning Arborescence Problem. The bounds on the optimal value of this minimax prob-
lem, obtained in a previous work, have been adapted in this paper in order to develop
the bounding process on the subproblems generated by our branching technique.

Recently, some other Branch and Bound algorithms have appeared in the litera-
ture [2,8] to solve the optimization problem considered in this paper on undirected
networks. This is a specific subproblem of the optimization model presented here;
hence, it seems to be unsuitable to compare these algorithms from a computational
view point. However, considering the computational results presented in the papers
[2,8] using similar numerical experiments to that displayed in the above section, one
can conclude that the computational behavior of our algorithm moves in the same
range of values. This can be considered a significant advance, taking into account that
our problem is more complex than its undirected version.
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